
J .  Fluid Mech. (l987), vol. 176, pp. 443-464 
Printed in &e& Britain 

443 
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The unsteady flow field pertaining to a drop moving vertically under gravity is 
obtained from the Stokes equations applicable to low-Reynolds-number flow. A proof 
is given that there is no variation in the normal stress over the drop surface. In 
consequence unsteadily moving drops remain spherical, subject only to the criterion 
of low Reynolds number. Numerical results are presented for a water drop moving 
through air. A small-time analysis of the motion provides a comparison between the 
motion of any drop, or bubble, with that of the presented water-drop solution. 

1. Introduction 
The unsteady motion of a drop moving vertically under gravity is analysed using 

the Stokes equations (with retention of the time derivative) for low-Reynolds-number 
flow. The internal and external flow for a drop of radius u, density po and viscosity 
coefficient po moving steadily under gravity is well known. In  steady motion the speed 
of the drop is given in terms of u = pl/po, the ratio of viscosity coefficients of the 
medium to the drop, and the density ratio h = po/pI, as 

2 (1 +a) (h- 1) uag v,=-  - 
3 (3+2u) u1 ’ 

with u1 = p l / p l ,  the kinematic viscosity of the medium. 
The unsteady motion of a solid sphere has been studied by Villat (1943) and 

Ockendon (1968). Sy, Taunton & Lightfoot (1970) determined the speed of both a 
solid sphere and a bubble having zero tangential stress at the interface. This work 
was extended by Sy & Lightfoot (1971) to include the speed of a drop, but the work 
is incorrectly formulated. This paper studies the motion of a drop, or a bubble, 
without any limitation being placed on the density or the viscosity of the drop or 
of the medium, other than that each parameter is a constant. The speed of the drop 
is determined and in addition a description of the flow inside and outside the drop 
is presented as a function of time. Numerical results are presented for a water drop 
moving through air. 

The flow is assumed known at t = 0 and two cases are considered. First, the drop 
is at rest in a quiescent medium. Secondly, the drop moves steadily for t < 0 with 
a speed V, which is not equal to the speed V, in (1.1). The second case arises if the 
drop is acted on by forces other than gravity, possibly electrical, for t < 0, and these 
forces are removed at t = 0. A steadily falling drop which encounters a sudden change 
in the medium, such m at an inversion in the atmosphere, will to some extent be 
modelled by this second case. The knokrn initial flow enables a Laplace transform 
solution to be obtained. 
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A steadily moving drop is known to have a uniform difference in normal stress at 
its surface (Batchelor 1967, p. 238). In consequence, steadily moving drops retain 
their assumed spherical shape without requiring the imposition of a dominant 
surface-tension force. The difference in normal surface stress is examined in unsteady 
flow and is again found to be uniform. Accelerating drops governed by the Stokes 
equations thus have no tendency to depart from a spherical shape. 

Small- and large-time results are derived from the transforms and numerical results 
are obtained for intermediate times after the inversion integrals have been reduced 
to real infinite integrals. Results are presented for the speed of the drop and a flow 
function, from which the streamline pattern is obtained at a sequence of times. The 
analytic small- and large-time results enable the motion of any drop, or bubble, 
moving through any medium to be compared with the presented solution for a water 
drop in air. For small time a boundary-layer type of flow is found near the drop 
surface which is obtained in terms of repeated integrals of the complementary error 
function. For the case of a water drop moving through air two distinct timescales 
affect the approach to the steady-state flow. The speed of the drop and the flow 
function become close to their steady-state values after a time of order v1 t/ae = 500, 
whereas the flow pattern becomes close to the steady-state pattern after a time of 
only v1 t/ae = 5. 

2. The Lapiace transform solution 

Stokes equation of motion referred to axes moving with the drop is 
A spherical drop of radius a moves vertically downwards with speed V ( t ) .  The 

d V  -=--vp+vvv - g k+=k ,  
av I 

at P 

where k is a unit upward vector and the density and kinematic viscosity have the 
values pl, v1 outside the drop and po,.vo, inside the drop. For axisymmetric flow the 
incompressible continuity equation is satisfied by a stream function !+, with 

r being distance from the drop centre and t? the inclination to the upward vertical. 
The vorticity equation derived from (2.1) is 

with 

A solution of the form I+ = sin2 8f(r, t )  

exists with f satisfying 

where 

Outside the drop (r > a), v has the value v1 and for large r 
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represents the translation V(t). Inside the drop v has the value vo and the fluid velocity 
is finite at the centre, requiring f / r 2  to be well behaved for small r. At the surface 
of the drop, r = a, the radial velocity is zero: 

f(a+, t )  = 0, f(a-, t )  = 0. (2.9) 

Also at the drop surface the azimuthal velocity v, and tangential stress component 
p,, are continuous, I 

(2.10) 

the r-suffix denoting differentiation. 
To complete the formulation of the problem the initial flow is prescribed. The 

simplest case is to release the drop from rest in a quiescent medium, f ( r , O )  = 0. 
Alternatively, the drop may be considered to be moving steadily with a speed V,, 
different from its terminal speed V,, for t < 0, and to commence its approach to the 
terminal speed, given by (1 .l), at t = 0. The initial and final flow fields are then both 
given by the known steady-flow solution 

r < a, 
4( 1 + a) a4 ' 

with a = pl/po. 
The solution is obtained in terms of the Laplace transform 

Rr,  s) = Jom e-8tf(r, t) dt 

and is expressed for t > 0 as the sum of two parts 

f = fi + f 2 ,  

where Llfl = 0, L2f2 = 0. 

The initial flow field is decomposed with 

(2.11) 

(2.12) 

(2.13) 

(2.14a, b)  

(2.15) 
r < a, 

and the remaining terms in (2.11) comprisingf,(r,O). The transform of (2.14b) is 

(2.16) 

which has 

(2.17) 
15-2 
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aa a solution, where 

8, = a(;-!' s1 =a($, (2.18) 

have positive real parts in the s-plane cut along the negative real axis. The first part 
of each expression in (2.17) is a particular integral and the second part containing 
A or B is a complementary function well behaved for large or small r.  The equation 
Llfl = 0 is unaltered by the transformation; a solution with appropriate behaviour 
for large and small r and which when added toj2 satisfies (2.9) is 

K(3+2a)v1a a 
[ i ~ ( s )  (r2-:)- 2s2fl+(rl r r 

- -A-( l+s l ) ,  r > a,  
\ - ,  

(2.19) = I  KV rrl, w2 r2 

-B-(sinhs,-s, coshs,), r c a. 
U2 

".,"", r 
(-2s2(1+cr)aP- 

The remaining boundary conditions, (2.10), determine A and B as 

(2.20) 

with 

(2.21) I co $5+2n 

!P, = 39, coshs0-(3+s:) sinhs, = - E 0 

n-O (5+2n) (3+2n) (2n+ l)!' 

n-o (5+2n) (2n+ I ) ! '  

03 

T, = (6+3s3 sinhs,-(6+s;)s0 coshs, = - E 

the series expansions being given for later use. The flow transform functionj has now 
been determined in terms of 7 and to complete the transform solution 7 is determined 
by the equation of motion of the drop 

(2.22) 

where M = $poaS is the drop mass and F is the force exerted by the exterior fluid 
on the drop, 

fn 
F = J (prr cos 0-p,, sine) 2na2 sinode. 

0 

I 
The stress components 

av, 
Prr = - P + 2 P p '  

(2.23) 

(2.24) 

are needed a t  r = a+. The 8-component of (2.1) is used to determine p, and the 
&dependence is removed by writing 

prr = -pl case, P,, = pi, sine, (2.25) 

with p, a constant. 
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There follows 

pir = p ~ H - 2  (a~rrr-hjr + 12.t~ +PI a( 9 - 3 9  (2 .26~)  

(2.26 c) 

all functions being evaluated at r = a,. Substituting for f in terms of 7 in the 
transform of (2.22) and (2.26) yields an equation for the speed of the drop. In  steady 
flow the result is (l.l),  and in unsteady flow the result is 

(2.27) 

with h = p,,/pl. Introducing the steady-state speed V,, (l.l), the equation may be 
recast - 

v- V,-K v,/8 - - 2 ( l + a ) s  3(3 +2a)[ (h+ t )  8; +: {-+ 1 T, + uT, 2aT, >-'I-'. (2.28) 

Substitution of this result into (2.17), (2.19) and (2.20) yields the transform of the 
flow function; the inversion of the transforms is considered in $5. 

In an earlier formulation of the 7 transform, (Sy t Lightfoot 1971), the kinematic 
viscosity v1 was unfortunately assumed both for the exterior and interior flow in the 
field equation (2.3), though the boundary conditions were correctly applied. In 
consequence and T, occurring in (2.28), though still having the functional form 
given in (2.21), become functions of s1 instead of go. In  the limiting cases of a solid 
sphere, t~ = 0, and of a bubble, a = 00, q and (Tz disappear from the transform and 
the earlier formulation remains valid. 

We conclude this section by formulating a drag coefficient for the drop. The force 
F exerted by the exterior fluid on the drop is given by (2.22) and consists of a 
buoyancy term 3ra3ppl g together with a drag- 

A drag coefficient C, based on the final steady fall of the drop is 

and (1 . l) enables this to be written aa 

(2.29) 

(2.30) 

(2.31) 

where R = 2aK/v1 is the Reynolds number. When the drop has ceased accelerating, 
this result recovers the known steady-flow value (Harper 1972). 
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3. The normal stress at the interface 
A notable feature of the motion of a drop moving steadily with speed given by (1 .l) 

is that the difference in normal stress at the interface has no angular dependence. The 
normal stress components can differ only by a constant and in consequence there is 
no tendency for the drop to depart from an assumed spherical shape. In this section 
it is shown that this result also holds in unsteady flow. 

To investigate the possible angular dependence of the difference in normal stress 
we express bothpir(a+, t )  andpir(a-, t ) ,  defined in (2.25), in terms of conditions inside 
the drop. Equation (2 .26~)  is used for pir(a+,t) ,  making use of (2.22) and the 
continuity of pie at the interface. Replacing pl,,ul by po,,uo in (2.26a, b), provides 
equations for pir(u-, t),pie(a-, t ) ,  and there follows 

the right-hand side being evaluated at r = a_. Introducing L,,L, from (2.7) and 
noting that f(a-, t )  = 0, the equation becomes 

Expressing f as the sum of its two parts, (2.13), and then interchanging L, and L, 
by use of 

the equation becomes 

Finally from (2.9)f2(a-, t )  = -fl(a-, t )  and inside the drop (2.19) givesf, a rz so that 
the right-hand side of (3.4) is zero. Hence, even in unsteady motion, there can be no 
angular variation in the difference in normal stress across the drop surface. There can 
exist only a constant difference normal stress and this is determined by the surface 
tension. It has previously been reported, (Sy & Lightfoot 1971) and (Clift, Grace & 
Weber 1978, p. 295), that in addition to the assumption of low Reynolds number, 
the Weber number must a150 be small in order to ensure a spherical drop in unsteady 
motion. The work of this section shows that provided the motion may be described 
by the Stokes equations the drop remains spherical ; this requires only the assumption 
of low Reynolds number. In  steady flow Taylor & Acrivos (1964) showed that the 
second term in a Reynolds-number expansion gives a spheroidal shape, with a 
coefficient proportional to the Weber number. A similar situation may well exist in 
unsteady flow. 

4. Small- and large-time results 
The flow description for small values of the time is obtained by considering the 

transform functions for large values of lsl. The behaviour of the ratio T,/T, follows 
from the definitions (2.21) as 

T 3 
3 = so+-+O(s;2). 7 SO 
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Substitution into (2.28) and inverting the transform yields a series expansion in 
powers of &. The first three terms are 

W ) -  v, - 6(v1 t/na*)! v,- v, - 2 ( : ~ ~ ) ~ ~ ~ ~ ; a * " - ( h + J ) { 1 + C ( v 0 / Y 1 ) ~ }  

9v, t(t - ( h + i )  (1 + 2a2:)} 
4(h+#*ae{l +a(vo/vl)f}* 

...]. (4.2) 

This three-term series is shown in figure 2 for a water drop in air and is in satisfactory 
agreement with the numerical solution for v1 t/a2 less than 100. 

The small-time behaviour of the flow inside the drop similarly follows from the 
transforms of 82. The leading term in the large-Is1 analysis is proportional to 
d{exp ( r  - a) so/a - re/a2} and both terms in the bracket need to be kept to describe 
the boundary layer near r = a. In  terms of the coordinate 

+ 

\ 

4 re 
fl = 8i3 erfcq- - 3nt a*' 

4 

n--r 

and successive integrals of the complementary error function i" erfc q, the first three 
terms are 

f(r, t )  -Ar,  0 )  9 (3+2u) =-  
(v, - v,) a* 4 (1 + a) h(h+f)  { 1 + a(v,/vl)+} 

(4.4) 
where 

and (4.5) 

3[{2+a(v0/v1)f-3a} v0/Y1+3{1 + (2a-3) (v0/V1)+}/(2h+ I)] d =  
1 + d v o / v , ) t  

This three-term expansion haa been used to compute f in the case of a water drop 
starting from rest at  t = 0.05a*/vl and the results agree to within 1% with the 
numerical results presented later; the result is shown in figure 3 (a). 

Of particular interest in the flow inside the drop is the location of the turning point 
of f ( r ,  t ) .  A t  this value of r = rM, (2.2) shows v, = 0, and in the equatorial plane B = +r 
it locates stagnation points MI vr also vanishes. Inside the drop the fluid circulates 
around a circle of radius rM in the equatorial plane. In steady flow (2.11) shows that 
rM = a/2/2. In unsteady flow starting with a drop at  rest, f ( r ,  0 )  = 0 ,  the location of 
rM in the equatorial plane starts on the surface of the drop, rM = a, and moves inwards 



450 R. F. Chisnell 

towards its final location at rM = a/t/2. A simple description of the motion of this 
equatorial stagnation circle is provided by the leading term fl in (4.4). An r- 
differentiation of fl leads to a turning point at the root of 

At  vo t/a2 = 0.46 x 10-2, which for a water drop in air corresponds to v1 t/a2 = 0.05, 
the root is rM = 0.882~. The agreement with the full numerical solution is excellent 
up to this value of the time, and the root is displayed in figure 4 up to v1 t/a8 = 1. 

The flow outside the drop is similarly derived for small values of the time in 

r - a  
terms of the similarity variable 

There follows 
(4.7) g=- 

2(v1t):' 

where 

2 a  3 r 2  
1 2i3 erfc 5-2 {; + 2 (2 - :)/ (h + $)} 

9 

9 9 
e =  

This three-term expansion is also shown in figure 3 (a) for v1 t/a2 = 0.05. 
It is of interest that the leading term is O(t) in the external flow and O(d) in the 

internal flow and further that the leading external-flow term is a potential flow past 
a sphere. The scaling factor in (4.8) shows that this potential flow describes a sphere 
moving with an acceleration 

dV 3 ( 3 + 2 ~ ) ( K -  V , ) V ,  _ -  - 
dt 2(1+4(h+$)a2  * 

(4.10) 

This result also follows directly from irrotational flow considerations. To maintain 
a steady flow with speed V, for t c 0 an applied force is required to provide a balance 
between the buoyancy force and the viscous drag. When the applied force is removed 
at t = 0 the drop accelerates and in the irrotational flow regime experiences an 
acceleration reaction @pl a3 d V/dt, (Batchelor 1967, p. 453). The equation of motion 
of the drop is 

(4.11) 
dV (3+2r)  dV 

@a3p - = *a3@,-p1)g-2nap V --@a3p -, dt O ( l + c r )  dt 

and equation (1.1) enables this to be recast in the form (4.10). 



Unsteady motion of a drop moving vertically under gravity 45 1 

The large-time behaviour is governed by the behaviour near the singular points 
of the transforms. In  the next section it is shown there are no singular points in the 
s-plane cut along the negative real axis, so that the large-time results are governed 
by the behaviour of the transforms near s = 0. The series expansions in (2.21) show 

(4.12) 

On substitution into (2.28), the term of O(8-l) gives the required asymptotic value 
V, for V( t )  and terms of O ( d ,  si, &) give the asymptotic result 

V, -V( t )  ( 3 + 2 a ) a  [ a2 { 4(1+a) 
V, - V, 2v1 t 3(3 + 2a) 1 +- 

3( 1 +a) (nvl t)a 

The leading term is O(v,t/a2)-i  with a coefficient depending only on a. However 
subsequent terms also depend on aZ( 1 + a) (h + $ ) / ( 3  + 2u) v1 t and for a water drop 
moving through air the series provides a good asymptotic estimate only for extremely 
large values of t  as h is large. In  $6 numerical results are presented for a water drop 
in air up to v l t /ae  = 1500, but as h is about 800, eleven terms in the above series 
would be required to provide the asymptotic estimate at this value of t .  A t  
v l t / a2  = los, however, the three given terms do provide agreement with all eight 
figures in the numerical solution for V(t ) .  

The large-time flow-field asymptotic estimate is similarly obtained. The departure 
from the final steady flow is O(t+), but because of the large value of h for a water 
drop in air the three-term asymptotic series does not provide a good comparison with 
the numerical solution over the range of time presented. In  other physical situations, 
such as the ascent of a bubble, the large-time asymptotic series may have greater 
utility and the first term 

(4.14) 

is given for reference. 

5. Inversion of the transforms 
In  92 the Laplace transform of the speed of the drop V(t )  and the flow function 

f ( r , t )  were obtained in the s-plane cut along the negative real axis. To obtain 
numerical results from the Laplace inversion theorem, the Bromwich path of 
integration is deformed to an infinite loop integral around the negative real axis. 
Before deforming the path an analysis of the singular points of J(r, 8) and v(s) is 
required. 

Singular points of T ( s )  will occur at zeros of the term in the square bracket in (2.28) 
and such points also define the singular points ofj(r, 8 ) .  We use the Principle of the 
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Argument to demonstrate that the transform functions have no poles in the cut 
e-plane and hence the two paths of integration are equivalent. On the cut all terms 
on the right-hand side of (2.28) are real with the exception of the (1 +8J1 term, el 
being purely imaginary. To facilitate an examination of the transform along the cut, 
the transform is rearranged to make this term more accessible, 

- 
V -  _ -  h -  

8 

where 

Apart from the origin, singularities of 7 are given by the zeros of H ( 8 ) ;  singularities 
of the { } bracket in the numerator and zeros of the bracket in the denominator in 
(5.1) are not singularities of 7. 

Some information about the zeros of H ( s )  may be obtained by considering the 
change in the argument of H ( e )  around the contour shown in figure 1, comprising a 
large and small circle centred on the origin joined by lines on either side of the negative 
real axis. On the small circle H ( s )  remains close to 1. On the large circle (4.1) gives 
H(8) - e,+s,/a, showing that R e H ( 8 )  > 0 on this circle. On the lines joining the 
circles, Im H(8)  = Im a1 which is positive on the upper line and negative on the lower 
line. We have thus shown that H(e)  is not real and negative anywhere on the contour. 
Consequently as 8 describes the contour in figure 1, H(8) describes a contour that does 
not cross the negative real axis, and thus the change in argument of H(8)  is zero. The 
Principle of the Argument shows that the number of zeros of H(e)  equals the number 
of ita poles. 

The poles of H(e)  are located at the zeros of the function 

e + 9 
I(8) = 

q+22aT, 24(h+i)'  (5.3) 

The change in the argument of I(s) around the same contour is now considered. On 
the small circle the second term is dominant. As the coefficient of is essentially 
positive, when 8 describes a small circle cut by the negative s-axis I ( s )  will describe 
a large circle cut by the same axis. On the large circle the first term in I @ )  dominates, 
I(s) - mi1, and I(s) describes a small semicircle having a positive real part as c is 
positive. On the negative real axis I(s) is real and the imaginary part of I (e )  on the 
lines just on either side of the axis requires investigation. In  the Appendix it is shown 
that T,/q has a positive imginary part when the real and imaginary parts of 4, are 
both positive. In  consequence the first term in I(8) has a negative imaginary part on 
the upper line and the second term clearly has the same property. Thus on the upper 
line, and similarly for the lower line, I(8) is nowhere real. Hence nowhere on the 
contour is I(s) real and negative and the change in argument of I(8)  is zero, indicating 
that it has an equal number of zeros and poles. Apart from the origin, poles of l ( 8 )  

occur only when T,/q = -22a. However in the Appendix it is shown that T,/q can 
be real and negative only on the negative real 8-axis. Hence I(8) has no poles inside 
the contour of figure 1 and thus I(s) has no zeros, giving H(8) no zeros and hence the 
transform functions have no poles in the cut plane. 

The path of integration in the Laplace inversion of the transform functions may 
now be deformed to a loop integral around the negative real axis. In the transforms 
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FIGURE 1.  The path of integration used to consider the change in argument of the functions H ( 8 ) ,  Z(s) 
in the cut s-plane. The path consists of a small and a large circle centred on the origin and parallel 
lines on either side of the cut. 

of both 7 and 1 the contribution from the pole at  the origin produces the difference 
between values of the function at  infinite and zero time. The integrals from the paths 
on each side of the axis are combined to form a single infinite integral. Writing 
8 = - vl z2/a2, with aO, 81 being positive imaginary on the upper path, there follows 

I 

where 

- (6-3y2) siny-y(6-y2) cosy 
’ -- !c 3y COB y - (3 - y2) sin y 

(5.4) 

I 

(5.5) Y = 4v1/vo)f, 
a r  r r2 
- sin- y- y cos-y-- (sin y- y cosy) 
r a  a a2 

(6 - 3y2) sin y - y(6- yz) COB y + 2u{3y cosy - (3 -ye) sin y} ’ Nl = 

N, = {z cos(~-l)z---- r r  a sin(b-l)z}Dl 
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FIGURE 2. The speed of the drop V( t )  obtained from (5.4) is shown aa a function of the 
non-dimensional time variable v1 t/a2. The initial speed of the drop is V, and it approaches V, for 
large time. Also shown is the three-term small-time result (4.2). 

6. Results 
Numerical results have been obtained for the speed of the drop and for the flow 

function f(r, t )  from the real integral formulation (5.4). Results are presented for a 
water drop moving through air, taking the density ratio pl/po = h-' = 1.247 x 
and the viscosity ratio ,ul/,u,, = u = 176/13040. The growth of the speed of the drop 
from its initial value V, towards its final value V, as a function of v,t/a* is shown 
in figure 2. The description given by the three-term small-time expansion (4.2) is also 
shown on the graph. The first term provides a timescale 2( 1 + CT) (h  +t)  a2/3(3 + 2a) v1 
for the development of the speed of the drop, which for the case of water drop moving 
through air has the value 179ae/v1. Figure 2 shows that 0.9 of the development is 
completed after approximately three of these time units, or at v,t/az = 500. For 
large t the departure from V, is O(t-i) and is given by (4.13). 

The flow functionf(r, t )  given by (5.4) has been calculated for a sequence of t-values. 
Figure 3 (a, b, c) shows the growth off(r, t )  in the case of a water drop starting from 
rest, f(r, 0) = 0, over a range equal to twice the drop radius. Typically the minimum 
value of f(r, t )  inside the drop is times the value at r = 2a and different scales 
off(r, t )  for r < a and r > a have been used; the derivative off(r, t )  at the interface 
r = a is continuous. In  figure 3(a) for the smallest time result presented, 
v1 t/az = 0.05, f(r, t )  has been obtained both by integration and the three-term 
small-time results (4.4), (4.8) ; the results are indistinguishable on the graph. In  figure 
3 (c) it is seen that at v1 t/az = 500 the growth off(r, t )  is almost complete and f(r, t )  
is close to the steady-state form (2.11). 

Inside the drop the fluid circulates about a circle in the equatorial plane and 
the radius of this circle rM is given by the location of the minimum off(r, t ) .  In the 
early stages of the flow development the minimum is close to the drop surface and 
in the final steady flow (2.11) shows it to be located at rM = a /d2 .  The variation 
of rM with t is shown in figure 4 and the estimate of rM from a single-term small-time 
expansion, (4.6), is also shown. 
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FIGURE 3(a,b) For caption see next page. 



456 

1 

R. F. Chienell 

FIGURE ~(u-c). The flow functionf(r,t) given by (5.4) is shown for a sequence of values of v, t /as  
over the range r = 0,2a. The drop moves from rest,f(r, 0) = 0. Scales differing by a factor of 2 x 10s 
or 1oJ forfhave been used inside the drop r < a and outside the drop r > a in order to accommodate 
the much larger values off in the external flow. With a uniform scale forf the slope at the surface 
of the drop, r = a, would be continuous. 

It should be noted that the minimum off approaches its final location on a much 
shorter timescale than that for the growth of f ( r , t ) ;  a t  v, t /a2 = 5 the minimum has 
almost reached its final location, whereas the growth of f(r, t )  is only approaching 
completion at ult/a2 = 500. Figure 5 shows the growth of the minimum value off 
over this larger timescale. 

The streamlines have been drawn for a sequence of times. Apart from axial 
symmetry, the form (2.5) also gives symmetry about the equatorial plane, and the 
streamlines are shown in just one quadrant. At small values of the time the leading 
term of O(t )  is present only in the external flow. This leading term, which is the 
potential motion of a sphere, is shown in figure 6 with the value of $ doubled on 
successive streamlines going away from the drop, starting with the streamline that 
crosses the equatorial plane at r = 1 .OO0461a. Figures 7 (a, b, c) respectively show the 
streamline pictures at u1 t/a2 = 0.05,0.2 and 5. Inside the sphere five streamlines are 
drawn, with $-values ranging from zero on the drop surface through six equal 
increments to  the location of the minimum off(r, t )  denoted by a cross. Outside the 
sphere the value of $ doubles on successive lines, the streamline closest to the sphere 
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RGO~E 5. The growth of the minimum value of f(r, t) aa a function of time. Most of the growth 
takes place over a timescale u1 t/a* = 500. The large-time value is -0.832 x lo-' V ,  a*. 
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FIGURE 6. Streamlines for the potential motion of a sphere. Only one quadrant of the symmetrical 
flow is shown. This flow is the leading term in the small-time result (4.8). The streamline closest 
to the sphere meets the equatorial plane at r = 1.000461a and successive streamlines double the 
stream-function values. 

having the same magnitude of + as occurs at  the minimum location inside the drop. 
As suggested by the short timescale on which the location of the minimum off  
approaches its steady-state location, the streamlines are observed to approach their 
final pattern quickly. The streamlines at v,t/az = 5 are close to the steady-state 
pattern, which is shown for comparison in figure 8. 

Some insight into these two different timescales is obtained by a comparison of the 
initial growth of appropriate functions. It is found that there are three distinct 
timescales for the development of the flow, though in the case of a water drop moving 
through air from rest there are just two times at which various flow variables 
essentially complete their development. Equation (4.8) shows that the exterior-flow 
function is governed by the same timescale as has already been obtained for V ( t )  and 
figure 3(c) shows that 0.9 of the development of the exterior-flow function is also 
completed at approximately v , t /a2  = 500. The internal flow, which has a more 
complicated initial behaviour, may be characterized by the location of the minimum 
of the flow function and this minimum value. The leading term in the small-time 
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FIQURE 7. Streamline patterns at (a) Y, t/a2 = 0.05, (b) 0.2 and (c) 5 derived from (2.5) and (5.4) 
(see overleaf for b, c). Inside the sphere the location of the minimum value fM of the stream 
function is marked x , and five streamlines, separated by increments of ffar are shown, fi being 
zero on the sphere. In the external flow the streamline closest to the sphere has a stream-function 
value equal and opposite to the internal minimum and successive streamlines double the 
stream-function value. 

expansion (4.4) of the interior flow has a minimum located at the root of (4.6). This 
equation defines the location of the minimum r M / a  solely in terms of vot/a2. The 
appropriate timescale is thus a2/vo and the other physical parameters affect only the 
higher-order description of the motion. This timescale cannot be related to the initial 
speed of the minimum due to a singularity; for small t ,  (4.6) provides 

The location of the minimum, as given by (4.6), does not attain the final value of 
a/1 /2 ,  though 0.9 of the change in rM is achieved by vo t /a2 = 0.09. For a water drop 
in air this time corresponds to v1 t/a2 = 0.98 and figure 4 shows that this fraction of 
the displacement of rM is in fact completed after about five of these time units. 
Finally, the development of the minimum of the internal-flow function is obtained 
by substituting r = rM into (4.4). The steady-state minimum occurs at 4 4 2  and the 
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FIGURE 8. The large-time streamline pattern obtained from (2.6) and (2.11). 

minimum value is obtained from (2.1 1)  as - V, aea/16( 1 +a). For a drop moving from 
rest, normalization of (4.4) with respect to this value gives 

and this coefficient provides a distinct third timescale of the motion. The 6 behaviour 
is not noticeable on the timescale used in figure 6 and an estimate of the development 
of the internal-flow function b a d  solely on the first term in the expansion (6.2) must 
be used with caution. In  the case of a water drop moving through air, this single term 
estimates that the development is completed at v1 t /a2 = 37.2. Figures 3 (c) and 5 
show that 0.9 of the development takes about 13 of these units, i.e. at v1 t/u* = 500. 
Thus although the initial timescales for the growth of the internal- and external-flow 
functions are different, the flow developments are essentially completed at approxi- 
mately the same time. For other choices of the parameters a and h this is unlikely 
to be the case and the ordering of the three timescales may well be completely 
different. 
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The author is indebted to Dr T. L. Freeman for a numerical study of the integrals 
in (5.4) and to Martyn Emerson for obtaining the results presented in $6 using the 
Nag library integration routine DOlAJF and the Nag graphics library routine 
JOGGFF. 

ReT, = (6+3x2-3y2) sinhx cosy-6xy coshx sin y 

-x(6 + x2 - 3y2) cosh x cosy + y(6+ 3x2 - yz) sinh x sin y, 

ImT, = 6xysinhxcosy+(6+3xa-3y2) coshxsiny 

Appendix 
The inversion of the transforms presented in $5 required two properties of the 

functions q ( s O ) ,  T2(s0), defined in (2.21). These properties, which relate to the 
imaginary part of T,/T,, are now derived. 

Write a0 = x + iy and determine the real and imaginary parts of q and T, : 

ReT, = 3xcoshxcosy-3ysinhxsiny 

- (3 + x2 - y2) sinh x cosy + 2xy cosh x sin y, 

Im q = 32 sinhx sin y+3y coshx cosy 

- (3 + xa - ya) cosh x sin y - 2xy sinh x cos y, 

The imginary part of T,/T, may now be obtained and we show that for x > 0, y > 0, 
the imaginary part of T,/q is positive. This is achieved by a decomposition of the 
imaginary part into six positive functions. Apart from the positive factor (qT)-l, 
the imaginary part of T,/q may be written as 

XY[Y2t1(X) + X2t2(Y) +y4t3(z) + x4:qt4(y) + &(x) + tJy)], (A 2) 
where 

I tl(x) = x sinh2x-3 cosh2x 

t2(y) = l y  sin2y-3 cos2y 

+ (3 + 4x2 + iP}, 
+ (3 - 4y2 + 3/41, 

sinh 22 
22 

t,(x) = - 

sin 2y 
t4(Y) = -- 

2Y 
t6(x) = (6x+ix3) sinh2x-3(1 +x2) cosh2x 

tJy) = (6y-b3) sin2y+3(1-ye) cos2y 

+{3-3x2-P}, 

-{3+3y2-y4}. 

The terms in brackets do not arise in the derivation of the imaginary part of T,/T, ; 
they are introduced to render each t-function positive for positive argument and they 
have a zero sum after the scaling in (A 2). 
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The three x-functions are each seen to be positive for positive x by inspection of 
their power series ; 

The demonstration that each y-function is positive for positive y is more tedious. 
The function t,(y) has 

(A 5 )  -- d6t,(y) - M y  sin2y 
dyb 

and the first non-zero derivative at  y = 0 is 

8- - 20. dat (0) 

dy8 

This sixth derivative is positive in (0, in) and as the first five derivatives are zero at 
the origin, an application of Taylor's theorem with a sixth-term remainder shows that 
t,(y) is positive in the range (O,+r) .  A similar application to the first five derivatives 
of t,(y) shows that all these derivatives are also positive at  y = fx. A similar argument 
may now be applied to the fourth derivative 

in the range (+, v). This derivative is positive in the range and the function and lower 
derivatives are positive at +. Taylor's theorem gives that t4(y) and its first four 
derivatives are positive up to y = 3n/4. Similar considerations applied to the third 
derivative , 

-- dst'(y) - -12 sin2y+8y cos2y+lSy 
dYS 

in the range (%,n) gives t,(n) > 0. Finally, for all y > 0 

which is positive for y > n. Hence tp(y) is positive for y > 0. 
The function yt,(y) has its first four derivatives zero at y = 0 and 

which is positive for all y. Hence yt4(y); and thus t,(y), is positive for y > 0. 



464 R. F. Chisnell 

To show t,(y) is positive the following derivatives are required : 

d (  
dYS 

d (  
dfl  

dY6 

dY8 

-- ate 'I - -(6yB+15) sin2y+(4y8+6y) cos2y+24y, 

-- 4t6 'I - -(8$+24y) sin2y-24 cos2~+24,  

-- det6(y) - 16(2yS+3y) sin2y-96ya cos2y, 

-- dete(y) - 128{(6y -y8) sin 2y + 6y2 cos 2y). 

The first non-zero derivative of t,(y) at y = 0 is the tenth derivative, which is positive 
at y = 0. Applications of Taylor's theorem in the same manner as for tB(y) achieve 
the following results. In the range (O,@)t,(y) and its first eight derivatives are 
positive, in (@, &r) t, and the &st six derivatives are positive, in (b, *) t, and the 
first four derivatives are positive, in (b, n) t, is positive. In  the range (n, 4/12) 

(A 12) 4(y) > - (6y-&3) + 3( -{3 + 3ya 

which is positive for y < 2/12. Finally, for y > 2/12 

t6(y) > (6?/-&S)+3(1 -ye)-{3 + 3 y a - f l )  

which is positive for y > 412.  Hence t,(y) is positive for y > 0. 
Thus we have shown T,/T, has a positive imaginary part for x > 0, y > 0 and can 

vanish only when z = 0 or y = 0. Further when y = O,a0 = z and the series form of 
q,T, in (2.21) shows that T,/T, is real and positive. Hence T,/T, can achieve real 
negative values only when x = 0, i.e. when so is purely imaginary and 8 is real and 
negative as required. 
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